267
edits
Line 11: | Line 11: | ||
* 27.9% for the ocean | * 27.9% for the ocean | ||
* 28.8% for photosynthesis<ref>[ | * 28.8% for photosynthesis<ref>[https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5+SummaryVolume+FINAL+FRENCH.pdf Page 51 of IPCC's fifth technical summary report (French)]</ref>. | ||
== Facilitation tips == | |||
This card is to be mirrored with the [[En-en adult card 7 co2 emissions|CO2 emissions]] card. To make the participants find it, we can show them the card and ask "Do you see anything weird on this card?". Very often participants notice that the legend is written upside down. We can then tell them that it is a puzzle to be solved and that the answer is on the table. In case the participants do not find it, they can be given clues: | |||
* What is the type of representation? A graph | |||
* What type of graph? A "filled" curve | |||
* What is the legend? The same as for CO2 emissions. | |||
== Other possible links == | |||
=== Causes === | |||
[[En-en adult card 6 deforestation|Deforestation]] Participants often think that deforestation reduces carbon sinks. In reality, the impact is minimal because deforested areas represent a very small part of the total forest area. On the other hand, the CO2 emitted is very important. | |||
[[En-en adult card 8 agriculture|Agriculture]] It doesn't matter if this link is not made, but it is true that agriculture can improve storage capacity through photosynthesis. This is the 4 per 1000 principle (if we increased the soil's capacity to sequester carbon by even 4/1000, we would have a significant impact on CO2). | |||
=== Consequences === | |||
[[En-en adult card 32 decline agricultural yields|Decline in agricultural yields]] Studies have shown that yields increase with increased CO2, but that the nutrient content of vegetables is reduced as a result. Indeed, trace elements are not more abundant when yields increase. | |||
== To go further == | |||
=== Variation in photosynthesis === | |||
On this card, we can see that in some years photosynthesis drops to 0, and varies greatly from one year to another. The explanation comes from the fact that the residual carbon sink is calculated from the remaining value of the other variables<ref>[https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL_FRENCH.pdf#page=66 Page 66 of IPCC's Fifth report summary - Working group #1 (French)]</ref>. This is why negative values are sometimes found. In this graph, emissions and their distribution only include flows that have varied since 1750, without the natural CO2 flows, such as the absorption of atmospheric CO2 from phasing out, the degassing of CO2 from lakes and rivers, and the degassing of CO2 in the oceans from the carbon brought by rivers. However, the IPCC does not clearly explain why such a variation can be read on the graph. | |||
It can be added that the atmospheric concentration has increased sharply in years with an El Niño phenomenon because it makes it difficult for vegetation to absorb carbon<ref>[https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pdf#page=48 The Global Carbon Project, 2019]</ref>. | |||
=== Carbon sinks capacity === | |||
[https://jancovici.com/changement-climatique/gaz-a-effet-de-serre-et-cycle-du-carbone/les-puits-de-carbone-ne-vont-ils-pas-absorber-le-surplus-de-co2/ Jean-Marc Jancovici’ web site - Won't "carbon sinks" absorb excess CO2? (French)] | |||
== References == | == References == | ||
<references /> | <references /> |
edits